본문바로가기

What we do

We aim to provide our clients with intelligence,
future-directed information and analysis.

Report purchase request

  • Sales team
  • 070-4006-0265 / 070-4006-1507 / 070-4006-0355

  • sales@sneresearch.com

Purchase inquiry
Battery, Emerging Industry

<2025> Battery Degradation Mitigation / Prediction / Diagnosis Technologies and Company Trends (Includes AI-Related Technologies)



Lithium-ion batteries play a pivotal role across various applications, including electric vehicles (EVs), energy storage systems (ESS), and portable electronic devices. However, the gradual degradation of performance over time remains one of the most critical factors determining battery lifespan, safety, and reliability. Accurately diagnosing and predicting battery degradation in industrial settings is not merely a technical challenge but also directly tied to economic feasibility, policy value, and overall market competitiveness.

 

Battery degradation is the fundamental cause of performance deterioration in lithium-ion batteries. The higher the energy density and power output, the more severe the degradation becomes, resulting in greater performance loss — hence, a deep understanding of degradation mechanisms is essential.

 

Currently, two main technology and market domains are being developed based on this concept: battery end-of-life diagnostics and fast-charging applications.

 

Diagnostic technology is essential in the process of reusing end-of-life batteries. Several OEMs have been conducting businesses utilizing reused batteries for years, and many other companies are currently preparing new ventures based on battery reuse applications.

 

In addition, for EVs to surpass the market share of conventional gasoline and diesel vehicles, it is essential to ensure both long battery life and short charging time, meaning fast charging capability. This represents a fundamental requirement for the rapid expansion of the battery and EV markets, where technologies that mitigate or suppress degradation under harsh conditions are indispensable.

 

Battery degradation prediction has evolved over several decades through physics-based modeling and experimental approaches. However, these traditional methodologies have revealed fundamental limitations in practical industrial applications, leading to the emergence of artificial intelligence (AI) and machine learning (ML) as new solutions. The constraints of conventional physical and empirical models have created the need for a new paradigm in battery degradation prediction, and AI and ML have risen as the answers to this demand.

 

Over the past decade, the introduction of AI technologies into battery research has advanced beyond simple data analysis, reaching a level of maturity that enables real industrial applications. In particular, for large-scale battery systems such as EVs and ESS, the rise of AI is now recognized not merely as a research trend but as an inevitable turning point for the industry.

 

This report is organized into twelve chapters. Chapters 1 to 3 discuss the need for technologies based on the understanding of battery degradation and provide fundamental knowledge related to degradation. Chapters 4 and 5 describe the causes and effects of degradation, while Chapters 6 and 7 address degradation mitigation strategies and diagnostic/predictive technologies. Chapter 8 focuses on AI and machine learning–based approaches for battery degradation diagnosis and prediction. Chapters 9 and 10 present the global status of related companies as well as market trends and outlook for the relevant industries, and Chapters 11 and 12 cover patents and the latest technological developments.

 

 

In this report, we aim to enhance understanding of battery degradation and identify opportunities amid current challenges. The report provides an in-depth discussion of degradation mechanisms, introduces various AI and machine learning–based technologies for degradation mitigation, diagnosis, and prediction, and presents detailed insights into domestic and global companies, market and industry trends, as well as notable patents and emerging technologies.

 

 

 

 

 

1. Overview--------------------------------------------------------------- 11

 

1.1. Intensifying Technological Competition                 12

 

1.2. After-Sales Management Issues                 16

 

1.3. Environmental Pollution Issues                 17

 

1.4. Fast-Charging Issues   20

 

 

 

 

 

2. Lithium Ion Battery-------------------------------------------------- 21

 

2.1. Components 24

 

 

 

3. Degradation ---------------------------------------------------------- 27

 

3.1. What Is Degradation?  28

 

3.2. Degradation Mechanism             31

 

 

 

4. Materials--------------------------------------------------------------- 33

 

4.1. Cathode          34

 

4.1.1. Degradation by Cathode Material         35

 

  4.1.1.1. Lithium nickel manganese cobalt oxides (NCM)         36

 

  4.1.1.2. Lithium Manganese Oxide (LMO)   41

 

  4.1.1.3. Lithium ferro-phosphate (LFP)       41

 

4.1.2. Factors Aggravating or Mitigating Degradation 42

 

  4.1.2.1 TM dissolution    43

 

  4.1.2.2. Intragranular and Intergranular Cracks        44

 

  4.1.2.3. Thermal Stability                45

 

        4.1.3. Results of Degradation              46

 

4.2. Anode              49

 

4.2.1. Degradation by Anode Material             49

 

  4.2.1.1. Graphite-Based Anode     50

 

  4.2.1.2. Li-Metal Anode   52

 

  4.2.1.3. Silicon-Based Anode         53

 

  4.2.1.4. Lithium Titanium Oxide (LTO)-Based Anode                53

 

4.2.2. Factors Aggravating or Mitigating Degradation 54

 

  4.2.2.1. Temperature       55

 

  4.2.2.2. Charging Current (C-rate)                  56

 

         4.2.2.3. State-of-Charge (SOC)          57

 

         4.2.2.4. Additional Degradation Induced by SEI          58

 

4.2.3. Results of Degradation             60

 

  4.2.3.1. Li Plating Reaction in Graphite Anode          60

 

  4.2.3.2. Additional Degradation Caused by SEI Layer              61

 

4.3. Electrolyte     63

 

4.4. Degradation of Inactive Materials (Binder, Current Collector, Separator, Components, etc.)   68

 

4.4.1. Binder          68

 

4.4.2. Current Collector      68

 

4.4.3. Separator    69

 

4.4.4. Cell Casing 69

 

4.5. Other Degradation Factors (Aging Conditions, Ambient Temperature, Battery Design, User Behavior, etc.)                  70

 

4.6. Interlinked Scenarios Among Degradation Mechanisms   71

 

4.6.1. Positive-Feedback Scenario  71

 

4.6.2. Negative-Feedback Scenario 72

 

                 

 

5. Results of Cell Degradation--------------------------------------- 73

 

5.1. Performance Degradation          74

 

5.1.1. Temporary Capacity Loss       74

 

5.1.2. Permanent Capacity Loss       74

 

 

 

6. Battery Degradation Mitigation Strategies ----------------- 78

 

6.1. Improvement of Active Material Properties           78

 

6.1.1. Cathode Active Material          78

 

  6.1.1.1. Improvement Methods for Ni-Rich NCM Cathodes    78

 

  6.1.1.2. Inner Surface Modification               78

 

  6.1.1.3. Outer Surface Modification              82

 

6.1.2. Anode Active Material              87

 

  6.1.2.1. Surface Coating 87

 

  6.1.2.2. Adjustment of Electrolyte Amount                 87

 

6.1.3. Solid Electrolyte Interphase (SEI)         87

 

  6.1.3.1. Electrolyte Additives         87

 

  6.1.3.2. Lithium Salts      89

 

  6.1.3.3. Solvents                90

 

6.2. Charging Methods        91

 

6.2.1. constant voltage (CV)                91

 

6.2.2. constant current (CC)                92

 

6.2.3. Constant Current/Constant Voltage (CC-CV)       92

 

6.2.4. constant power (CP)                  94

 

6.2.5. Constant Power/Constant Voltage (CP-CV)         95

 

6.2.6. Boost Charging          95

 

6.2.7. varying current decay (VCD)  96

 

6.2.8. multistage constant current (MCC)       97

 

6.2.9. Pulse Charging           98

 

  6.2.9.1. Precautions for Pulse Charging      98

 

6.2.10. Trickle Charging      98

 

 

 

7. Battery Degradation Diagnosis and Prediction Technologies------------------------------------ 100

 

7.1. Analysis Techniques by Degradation Mode            101

 

7.1.1. Analysis of Structural Changes and Decomposition of Active Materials      101

 

7.1.2. Particle Fracture Analysis       102

 

7.1.3. SEI Layer Growth Analysis      103

 

7.1.4. Li Plating Analysis    103

 

7.2. Electrochemical Analysis Methods           105

 

7.2.1. Cell Voltage and Capacity Analysis       105

 

7.2.2. Resistance Analysis  110

 

7.3. Non-Model-Based Analysis        112

 

7.3.1. Diagnosis of Internal Battery Factors   113

 

7.3.2. Diagnosis of External Battery Factors  114

 

7.4. Model-Based Analysis                  115

 

7.4.1. Types of Models        116

 

  7.4.1.1. Empirical Models                117

 

  7.4.1.2. Physical Models 118

 

  7.4.1.3. Single-particle models (SPM)          119

 

7.4.2. SEI Layer Growth      120

 

7.4.3. Li plating     121

 

7.4.4. Structural Change and Decomposition of Cathode          121

 

7.4.5. Particle Fracture        122

 

7.4.6. Silicon additives        122

 

7.5. Diagnosis and Prediction Using Machine Learning / Artificial Intelligence    123

 

7.5.1. Background of ML/AI-Based Diagnostic Technologies    124

 

7.5.2. Performance and Safety Prediction     125

 

7.5.3. Degradation and Lifetime Prediction  126

 

7.5.4. On-Line Estimation Techniques             135

 

7.6. Post-Mortem Analysis 144

 

7.6.1. Precautions During Cell Disassembly  146

 

7.6.2. Cell Opening Procedures and Component Separation Methods  147

 

7.6.3. Physical Analysis Techniques                  149

 

  7.6.3.1. X-ray Diffraction (XRD)      149

 

  7.6.3.2. Microscopy and Electron Diffraction              151

 

7.6.4. Chemical Analysis Techniques               153

 

  7.6.4.1. Elemental Analysis            153

 

  7.6.4.2. Gas Measurement               155

 

  7.6.4.3. Impurity and Organic Compound Analysis 155

 

7.6.5. Thermal Stability Analysis      156

 

 

 

8. AI and Machine Learning-Based Battery Degradation Diagnosis and Prediction (Advanced)--------------- 159

 

8.1. Overview of Battery Degradation Prediction         159

 

8.1.1. Industrial Importance of Battery Degradation Prediction               159

 

8.1.2. Limitations of Traditional Physics-Based Models              160

 

8.1.3. Emergence of Artificial Intelligence      163

 

8.1.4. Data-Driven Degradation Diagnosis Techniques                165

 

8.1.5. Probabilistic Models and Uncertainty Quantification      166

 

8.1.6. Integration of Physical and AI Models (Physics-Informed Machine Learning, PIML)                  167

 

8.1.7. Industrial Implications and Policy/Market Linkages         169

 

8.2. Quantification of Predictive Uncertainty and Reliability Validation                 170

 

8.2.1. Background and Problem Definition   170

 

8.2.2. Types of Uncertainty and Modeling Principles 171

 

8.2.3. Evaluation Metrics and Calibration Protocols   172

 

8.2.4. Data Splitting and Distribution Shift Validation                 174

 

8.2.5. Implementation of Uncertainty by Model Type                  176

 

8.2.6. Improving Data Efficiency Using Chemistry-Aware or Synthetic Data         178

 

8.3. Physics-Informed / Hybrid Modeling       182

 

8.3.1. Problem Definition and Background   182

 

8.3.2. Mathematical Framework       183

 

8.3.3. Performance Comparison and Limitations        185

 

8.3.4. Industrial Implications             188

 

8.3.5. Conclusions and Future Directions      189

 

8.4. Explainability and Interpretable AI          190

 

8.4.1. Background and Need for Explainability             190

 

8.4.2. Classification of Interpretation Methods             191

 

8.4.3. Case-Based Explanations        193

 

8.4.4. Industrial Implications             194

 

8.4.5. Technical Limitations and Future Challenges    195

 

8.5. Multi-Factor and Complex Degradation Mechanism Modeling         196

 

8.5.1. Background and Problem Definition   196

 

8.5.2. Multi-Factor Datasets and Analysis      197

 

8.5.3. Combined Chemical and Physical Factor Model                198

 

8.5.4. Hybrid Models and Interpretability      201

 

8.5.5. Industrial Implications             202

 

8.6. Multiscale Electrode Modeling and AI Integration                203

 

8.6.1. Necessity of Electrode-level Modeling                  203

 

8.6.1.1. Background and Problem Definition                 203

 

8.6.1.2. Technical Supplementation with AI 203

 

8.6.2. Particle-level Electrode Modeling and the Role of AI       204

 

8.6.2.1. Background and Problem Definition                 204

 

8.6.2.2. Integration of Model and AI                 204

 

8.6.2.3. Industrial Implications         209

 

8.6.3. Analysis of Electrode Porous Structure and AI Integration              210

 

8.6.3.1. Background and Problem Definition                 210

 

8.6.3.2. Mathematical Modeling       210

 

8.6.3.3. Experimental and Visualization Techniques   215

 

8.7. Summary and Future Tasks       222

 

8.7.1. Comprehensive Discussion   222

 

8.7.2. Remaining Limitations            223

 

8.7.3. Future Tasks                224

 

8.7.4. Conclusion 224

 

                 

 

9. Overview of Companies Related to Battery Degradation

 

9.1. Korea                226

 

9.1.1. Wonik PNE 226

 

9.1.2. PMGrow       228

 

9.1.3. MinTech                        231

 

9.1.4. NSys                               235

 

9.1.5. Cammsys    240

 

9.1.6. SL Corporation                            241

 

      9.1.7. Bumyung                           242

 

9.1.8. Haedong Engineering                                 245

 

9.1.9. nanu (AIMS)                                  247

 

9.1.10. SIcell                            249

 

9.1.11. poen                            252

 

9.1.12. Max Science                               255

 

9.1.13. ODA Technology                      259

 

      9.1.14. MONA              264

 

9.1.15. ELT Co., Ltd.                               266

 

9.1.16. Quantum Solution Co., Ltd.                  269

 

9.1.17. Waton                          274

 

9.1.18. MAK                              279

 

9.1.19. HYUNDAI KEFICO                     281

 

9.1.20. Nexcon Technology Co., Ltd.                282

 

 

 

9.2 North America                 287

 

9.2.1 AMP                287

 

9.2.2. Nuvation energy       290

 

9.2.3. Intel Corporation      293

 

9.2.4. Analog Devices, Inc. 294

 

9.2.5. Ewert Energy Systems             298

 

9.2.6. STAFL Systems, LLC.                 300

 

9.2.7. Sensata Technologies              302

 

9.2.8. Exponential Power, Inc.          305

 

9.2.9. REDARC Electronics 306

 

9.2.10. KPM Power Inc        309

 

9.2.11. Eberspaecher Vecture            312

 

9.2.12. QNOVO      318

 

9.2.13. Electrovaya Inc       321

 

9.2.14. Liminal Insights, Inc               324

 

9.2.15. Visteon      326

 

 

 

9.3 Europe              330

 

9.3.1. STMicroelectronics  330

 

9.3.2. Leclanche   333

 

9.3.3. Eatron technologies                  337

 

9.3.4. BAMOMAS  341

 

9.3.5. BMS Powersafe          344

 

 

 

9.4 Japan                347

 

9.4.1. FDK Corporation       347

 

9.4.2. 4R Energy   349

 

9.4.3. TOYO SYSTEM             352

 

9.4.4. MARELLI      354

 

9.4.5. Hitachi Astemo          357

 

 

 

9.5 China                 363

 

9.5.1. BYD                363

 

9.5.2. CATL New Energy Technology Co., Ltd.                366

 

9.5.3. Shenzhen PACE Electronic Technology Co., Ltd.               368

 

9.5.4. Pylontech-Pylon Technologies Co., Ltd.              370

 

9.5.5. Findreams battery    374

 

9.5.6. HUASU         376

 

9.5.7. SINOEV (Octillion)    382

 

9.5.8. LIGAO Technology    383

 

9.5.9. UAES             390

 

9.5.10. Intron        393

 

9.6. Others              398

 

9.6.1. ION Energy Inc           398

 

 

 

10. Market Overview and Outlook------------------------------- 402

 

10.1. BMS               402

 

10.1.1. Global BMS Market Outlook (2021–2030)           402

 

10.1.2. BMS Suppliers by EV Model (2012–2024)            403

 

10.2 Fast Chargers                 418

 

10.2.1. Global Market Status              418

 

10.2.2. U.S. Fast Charger Market Outlook (2021–2030)                 418

 

10.2.3. Status by Major U.S. Cities   419

 

10.2.4. Regional Status of Fast Chargers in Korea        420

 

10.3. Global Battery Diagnosis Market            422

 

10.3.1. Global Battery Diagnosis and Repair Market Trend        422

 

10.3.2. Global Battery Equipment Market Trend           423

 

 

 

 

11. Patents Related to Battery Degradation Suppression and Diagnosis (2017–2021)---------- 427

 

11.1 Domestic Patents        427

 

 

 

 

12. Latest Technologies Related to Degradation Diagnosis------------------------------------------ 474

 

12.1. Analysis of Charge Transfer Resistance Behavior                474

 

12.2. Local Li Plating Analysis Due to Temperature Nonuniformity         479

 

12.3. IR Drop Analysis         483

 

12.4. Incremental Capacity Analysis                487

 

12.5. Differential Voltage Analysis   490

 

12.6. Graphite Anode Interface Analysis Under Fast-charging Conditions              494

 

12.7. Development of Anode Coating Materials and Impedance Analysis              497

 

 

 

 

 

13. References------------------------------------------------------- 500