본문바로가기

What we do

We aim to provide our clients with intelligence,
future-directed information and analysis.

Report purchase request

  • Sales team
  • 070-4006-0265 / 070-4006-1507 / 070-4006-0355

  • sales@sneresearch.com

Purchase inquiry
Battery, Battery Materials

<2024> Development Trends and Outlook of Anode-Free Technology for Secondary Batteries

(Focusing on Plating-Type Anode-Free Technology)

 

 

 

With the growth of the electric vehicle market, various requirements for battery technology are emerging, and particular attention is being paid to improving the energy density of cells, as higher energy density in EVs directly translates into longer driving range per charge. Therefore, new research efforts aimed at increasing energy density are gaining traction.

 

Existing research includes increasing the Ni content in the active material, using solid electrolytes, or developing lithium-metal batteries that use lithium as the anode material to significantly reduce anode thickness.

 

Lithium-metal anodes theoretically exhibit high gravimetric capacity (3862 mAh g¹) and volumetric capacity (2093 mAh cm³), and possess the lowest redox potential (-3.05 V vs. SHE). Therefore, replacing graphite anodes with lithium metal provides more than ten times the capacity of graphite at the same weight, enabling lithium-metal batteries (LMBs) to achieve an energy density of 500 Wh kg¹ (750 Wh L¹).

 

However, lithium-metal batteries face several issues, including dendrite formation on the lithium-metal anode, side reactions between the electrolyte and metal, electrolyte consumption and depletion caused by the formation of a thick SEI layer, and low coulombic efficiency (CE) resulting from the instability of the lithium plating/stripping process.

 

The concept of the anode-free lithium-metal battery (AFLMB) emerged as a result of these issues. Along with the recent development of all-solid-state batteries, anode-free batteries have been receiving increasing attention. Anode-free cells use only a current collector without any active material at the anode, offering the advantage of achieving a dramatic improvement in energy density.

 

Anode-free batteries are being highlighted as one of the promising future battery technologies due to their theoretical gravimetric and volumetric energy density. Although they theoretically provide higher energy density than conventional lithium-ion batteries, their current development is limited by the absence of a Li reservoir and severe lithium loss at the anode, resulting in only a few cycles of operation at room temperature.

 

Anode-free, also referred to as anode-less, batteries are a next-generation technology expected to overcome the limitations of lithium-ion batteries. The anode plays a critical role in determining battery lifetime and charging rate, and in the case of graphite anodes currently used in LIBs, technological development has already reached a mature stage, making further performance improvement difficult. If the amount of anode material is reduced or eliminated, the volume and mass of the cell decrease, resulting in higher energy density.

 

In conventional LIBs, charging and discharging occur as lithium ions in the cathode active material move between the anode and cathode through the electrolyte. In other words, lithium ions deintercalated from the cathode are inserted into the layered structure of graphite at the anode, and conversely, lithium ions are deintercalated from the anode and move back to the cathode repeatedly. In contrast, in anode-free lithium secondary batteries, only the anode current collector exists without any anode active material to store lithium ions coming from the cathode. Copper (Cu) is typically used as the anode current collector, and the charging process involves lithium ions being deposited on the current collector surface in the form of lithium metal. During discharge, the deposited lithium is stripped back into ion form and moves to the cathode, repeating this cycle.

 

The cost of anode-free lithium batteries is reduced because there are no expenses associated with raw materials, solvents, additives, or processing for the anode. In addition, cost issues related to the transportation, storage, and refining of lithium metal are eliminated. Finally, since the conventional anode structure is replaced with a metal foil, it becomes possible to achieve the highest theoretically attainable gravimetric and volumetric energy densities.

 

Due to the absence of an anode active material that can stably store lithium, the anode volume in anode-free batteries expands during cycling, which leads to degradation of battery life. Although they offer a significant advantage in terms of dramatically improved energy density, they still face the inherent limitation of performance deterioration caused by dendrite formation. Recently, as the development of all-solid-state batteries applying solid electrolytes has advanced considerably to enhance safety, various approaches have been explored to suppress dendrites in anode-free batteries and improve their performance.

 

This report summarizes the development status of anode-free batteries by development period, covering both academic research and industrial efforts led by companies such as Samsung SDI, to provide a structured understanding of anode-free battery research and development.

 

 

 

Strong Points of This Report

 

Detailed summary of the introduction, research trends, and development status of anode-free batteries

 

Summary of recent R&D results for next-generation batteries such as anode-free all-solid-state batteries, Li-metal batteries, Na batteries, and Li–S batteries

 

Summary of government-supported anode-free battery development programs and related technological achievements across major countries

 

Detailed overview of recent activities and patent analysis of companies developing anode-free batteries

 

텍스트이(가) 표시된 사진

자동 생성된 설명

 

 

 

 

 Anode-free lithium battery advantages. (A) Schematic diagram of a lithium-ion battery and an anode-free full cell.

(B, C) Volumetric and gravimetric energy densities of AFLMBs based on various cathodes and stack costs according to capacity and NP ratio using $/kWh.

 

 

ONE의 1세대 1007 Wh/L 무양극 전지텍스트, 스크린샷, 폰트, 디자인이(가) 표시된 사진

자동 생성된 설명

기계, 공학, 실내, 산업이(가) 표시된 사진

자동 생성된 설명텍스트, 스크린샷, 번호, 폰트이(가) 표시된 사진

자동 생성된 설명

 

 

 

 

 

 

1. Basic Understanding of Anode-Free (Anode-Less) Batteries

 

1.1 Improving Coulombic Efficiency of Anode-Free Lithium Metal Batteries  13

 

1.2. Implementation of Practical Anode-Free Batteries             14

 

1.2.1. Cell Modification      15

 

1.2.2. Separator Modification           16

 

 

 

2. Anode Active Materials for Anode-Free Batteries

 

2.1. Requirements for Anode Active Materials            16

 

2.2. Properties of Lithium Metal      16

 

2.3. Use of Lithium Metal Electrodes             17

 

2.4. Non-uniform Lithium Deposition            20

 

2.5. Suppression of Dendrite Formation by Solid Electrolytes    26

 

 

 

3. Anode-Free Lithium Batteries: Materials, Electrode, and Electrolyte Development

 

3.1. Overview       27

 

3.2. Optimization of Testing Methods            29

 

3.2.1. Hot Formation Protocol          30

 

3.2.2. Asymmetric Charge-Discharge Protocol            31

 

3.3. Electrolyte Modification             32

 

3.3.1. Liquid Electrolytes    32

 

3.3.1.1 Solvent Composition            33

 

3.3.1.2. Salt and Anion Composition              36

 

3.3.1.3. Electrolyte Additives           38

 

3.3.1.4. Solid Electrolytes  41

 

3.3.1.5. Organic Materials  45

 

 

 

 

 

4. Interfacial Chemistry of Anode-Free Cells: Challenges and Strategies

 

4.1. Overview       47

 

4.2. Interfacial Issues        47

 

4.3. Interfacial Engineering Strategies           49

 

4.3.1. SEI Layer Regulation via Electrolyte Design       49

 

4.3.2. Artificial SEI             51

 

4.3.3. Wetting of Cu Current Collectors         53

 

4.3.4. 3D Current Collectors            55

 

4.3.5. Interfacial Chemistry in Anode-Free All-Solid-State Batteries (AFSSBs)    57

 

 

 

5. Anode-Free Lithium Pouch Cells: Dual-Salt Electrolyte Application

 

5.1. Summary      57

 

5.2. Research Results        58

 

5.2.1. Cell Performance of Dual-Salt Electrolytes        58

 

5.2.2. Effect of External Pressure on Li Morphology and Cell Performance            59

 

5.2.3. Anode–Electrolyte Interface   61

 

5.2.4. Electrolyte Consumption        61

 

 

 

6. Strategies for Long Cycle Life in Anode-Free Lithium Metal Batteries

 

6.1. Research Summary    62

 

6.2. Theoretical Basis and General Characteristics       64

 

6.2.1. Configuration and Basic Principle of Anode-Free Lithium Metal Batteries   64

 

6.2.2. Energy Density        64

 

6.2.3. Assembly Process and Cost   65

 

6.3. Factors Affecting the Lifespan of Anode-Free Lithium Metal Batteries          65

 

6.3.1. Formation and Characteristics of the SEI Layer  67

 

6.3.2. Formation of Dead Lithium    67

 

6.4. Strategies for Building Long-Life Anode-Free Lithium Metal Batteries          70

 

6.4.1. Additional Li Compensation from the Cathode   70

 

6.4.2. SEI Design through Electrolyte Composition Tuning        71

 

6.4.2.1. Liquid Electrolytes 71

 

6.4.2.2. Solid-State Electrolytes for Long-Life Anode-Free Batteries     74

 

6.4.2.3. Li-Metal Deposition via Substrate Design      76

 

6.4.2.4. Regeneration of Dead Li     81

 

6.4.2.5. Test Protocols       83

 

6.4.3. Research Outcomes 85

 

 

 

7. Energy Density Comparison: Anode-Free vs. Lean Anode Batteries

 

7.1. Energy Density Comparision     88

 

7.2. Cycle Life Compariosn              90

 

7.3. Research Summary    94

 

 

 

8. Cathode Development for Anode-Free Lithium Metal Batteries

 

8.1. Li-Rich Li2[Ni0.8Co0.1Mn0.1]O2  Cathode         95

 

8.1.1. Research Overview  95

 

8.1.2. Cathode Material Synthesis and Characterization  97

 

8.1.3. Electrochemical Evaluation  99

 

8.1.4. Full-Cell Evaluation  102

 

8.1.5. Conclusion  103

 

8.2. Development of Mn-Based Li-Rich Spinel Cathodes         103

 

8.2.1. Research Overview  103

 

8.2.2 Coin Cell Evaluation  104

 

8.2.3 Cathode Structural Analysis  107

 

 

 

9. Current Collectors for Anode-Free Lithium Metal Batteries

 

9.1. Research Overview     109

 

9.2. Porous-Defective (MV) Carbon Current Collectors             111

 

9.3. Defect-Free SEI Layers at the Current Collector/Electrolyte Interface            114

 

9.4. Uniform Lithium Deposition Facilitated by Porous Defects 117

 

9.5. Cycling Stability of Porous-Defective Carbon Current Collectors      119

 

9.6. Electrochemical Performance of Anode-Free Lithium Metal Full Cells           122

 

 

 

10. Anode-Free All-Solid-State Batteries: Current Status, Issues, and Challenges

 

10.1. Advantages and Disadvantages of Anode-Free Batteries 124

 

10.1.1. Advantage of Anode-Free Cell (1): Enhanced Energy Density (assuming a cathode thickness of 100 μm)             124

 

10.1.2. Manufacturing and Cost       126

 

10.1.3. Recyclability           126

 

10.2. Anode-Free Lithium Metal Batteries (with Liquid Electrolytes)       127

 

10.2.1. Current Collector Modification            127

 

10.2.2. Modification of Liquid Electrolytes     129

 

10.2.2.1. Dual-Salt and Multi-Salt Electrolytes           129

 

10.2.3. Modification of Cycling Protocols       129

 

10.2.4. Synergistic Strategies          130

 

10.2.5. Strategies for the Successful Implementation of Anode-Free All-Solid-State Batteries       130

 

10.3. Anode-Free All-Solid-State Batteries   131

 

10.3.1. Thin-Film Anode-Free All-Solid-State Batteries           131

 

10.3.2. Composite Cathodes for Anode-Free All-Solid-State Batteries   132

 

10.3.3. Key Challenges and the Most Promising Solution Strategies for Anode-Free All-Solid-State Batteries             134

 

10.3.3.1. Coulombic Efficiency and Lithium Inventory Retention             134

 

10.3.3.2. Interfacial Issues 136

 

10.3.3.2.1. Interfacial Stability         136

 

10.3.3.3. Interfacial Effects             138

 

10.3.3.3.1. Implications for Anode-Free All-Solid-State Batteries          139

 

10.3.3.4. Dendrite Formation           141

 

10.3.3.4.1. Mechanism of Dendrite Formation            141

 

10.3.3.4.2. Implications for Anode-Free All-Solid-State Batteries          143

 

10.4. Cell Design and Practical Energy Density           145

 

10.5. Conclusion   147

 

 

 

11. Anode-Free All-Solid-State Batteries: Recent Advances and Future Prospects

 

11.1. Sulfide-based solid electrolytes            149

 

11.2. Oxide, Polymer, and Composite Solid Electrolytes           151

 

11.3. Future Perspectives  154

 

11.3.1. General Considerations        154

 

11.3.2. Anode-Free All-Solid-State Batteries: Application of Sulfide-Based Solid Electrolytes        155

 

11.3.3. Application of Oxide/Polymer/Composite Electrolytes in Anode-Free SSBs           155

 

 

 

12. Fabrication of Anode-Free All-Solid-State Batteries: Application of LLZO Electrolytes

 

12.1. Research Summary  156

 

12.2. Experimental             157

 

12.2.1. In-Situ Plating of Lithium     157

 

12.2.2. Lithium Dynamics and Nucleation at the Current Collector/LLZO Interface             160

 

12.2.3. Performance of In-Situ Plated Lithium-Metal Anodes   161

 

12.3. Conclusion   162

 

 

 

13. Anode-Free Solid-State Batteries : Composite Applications

 

13.1. Research Summary  163

 

13.2. Results and Discussion          166

 

13.2.1. 3D Interconnected Carbon Layer       166

 

13.2.2. Ion–Electron Conducting Network      166

 

13.2.3 Lithium Plating/Stripping Behavior    168

 

13.2.4. Electrochemical Performance             169

 

 

 

14. Anode-Free Liquid-Based Li–S Batteries

 

14.1. Research and Experimental Overview   171

 

14.2. Cycling Performance and Electrochemical Analysis          173

 

14.3. Effect of Nd(OTf)₃ on the Cathode        175

 

14.4. Effect of Nd(OTf)₃ on the Anode           177

 

 

 

15. Anode-Free Li–S (Quasi-Solid) Batteries

 

15.1. Research Summary  179

 

15.2. Research Background             179

 

15.3. Results        182

 

15.3.1. Cell and Materials  182

 

15.3.2. Fabrication and Characterization of Li₂S@MX Cathodes 183

 

15.3.3. Electrochemical Properties of Li‖Li₂S@MX Cells with Non-Aqueous Liquid Electrolytes        184

 

15.3.4. Li₂S|CGPE|Cu Cell and Energy Storage Performance     185

 

15.3.5. Battery Safety Evaluation     186

 

15.3.6. Conclusion and Summary    187

 

 

 

16. Anode-Free Sodium-Metal Batteries (AFSMBs)

 

16.1. Overview of Anode-Free Sodium-Metal Batteries           188

 

16.2. Advantages of the Anode-Free Configuration     189

 

16.3. Limitations of Sodium Foil      190

 

16.4. Energy Density         190

 

16.5. Carbon Footprint and Cost      191

 

16.6. Sustainability             193

 

16.7. Impact on Upstream Industries             193

 

16.8. Transition Metals      194

 

16.9. Cathode Material: Na₂CO₃       195

 

16.10. Al foil        196

 

16.11. Key Challenges and Strategies for Optimization             197

 

16.11.1. Limited Sodium Source      197

 

16.11.2. Na-Rich Cathode Materials             197

 

16.11.3. Na-Ion Augmentation Coatings       199

 

16.11.4. Super-Concentrated Electrolytes     200

 

16.11.5. Irreversible Sodium-Ion Loss          201

 

16.11.6. Artificial Interlayer Engineering         201

 

16.11.7. Electrolyte Modification      202

 

16.12. Conclusion and Summary     204

 

 

 

17. Anode-Free Sodium Solid-State Batteries

 

17.1. Results        207

 

17.1.1. Electrochemically Stable Electrolytes 207

 

17.1.2. Interfacial Contact  207

 

17.1.3. Dense Solid Electrolytes      209

 

17.1.4. High-Density Current Collectors        210

 

17.1.5. Stack Pressure and Sodium Morphology          212

 

17.1.6. Anode-Free Na All-Solid-State Full Cell         214

 

17.1.7. Conclusion             215

 

 

 

18. National Program on Anode-Free Li Batteries

 

18.1. PNNL DOE Program: Project ID #BAT585)          216

 

18.1.1. Project Approaches             216

 

18.1.2. High-Performance Localized High-Concentration Electrolytes    216

 

18.1.3. Polymer-Coated Cu substrates (PLCu) for Improved Li Stripping Uniformity           216

 

18.1.4. Pressure Optimization in 2032 Coin Cells        217

 

18.1.5. Li morphology after 200 cycles in Cu||NMC811 Cells    217

 

18.1.6. Electrochemical Performance of Multilayer Cu||NMC532 pouch cells (250mAh)    218

 

18.1.7. Thermal Stability Improvement in 250 mAh Pouch Cells using E1 Electrolyte         218

 

18.2. SOLVE Program: Horizon Europe Project            219

 

18.3. Europe AM4BAT: Solid-State Battery Development via 3D Printing             220

 

18.3.1. Development of 3D Metallic Nanostructures and Lithiophilic Current Collectors      221

 

18.4. South Korea: Development of Anode-Free Lithium Batteries         223

 

 

 

19. Patent Analysis on Anode-Free Batteries

 

19.1. Samsung SDI           224

 

19.2. Samsung Electronics 226

 

19.3. Samsung Electronics 228

 

19.4. LG Chem    232

 

19.5. LGES          235

 

19.6. Hyundai Motor          237

 

19.7. Tesla           239

 

19.8. Terawatt Technology 241

 

19.9. Korea Electrotechnology Research Institute (KERI)          244

 

19.10. Korea Advanced Institute of Science and Technology (KAIST)      247

 

19.11. Korea Institue of Industrail Technology (KITECH)            248

 

 

 

 

 

20. Development Trends by Company

 

20.1. Samsung SDI           250

 

20.2. Quantumscape         253

 

20.3. ONE(Our Next Energy)           257

 

20.4. ION Storage Systems             262

 

20.5. Jinyu New Energy    268